Place value game

I often play this simple game with younger pupils to help them build a stronger understanding of place value. It’s simple and requires no resources.

Start off by drawing a place value chart on the board.  Depending on where you are at, you could do just hundreds, tens, ones or you could include digits either side of the decimal point, e.g. tens, ones, tenths and hundredths.  Use this as an opportunity to target questions at students as you are drawing the table “if we are doing place value, which column is this?”

Each group then has a row on the place value chart.  You want to limit it to about 6-7 groups otherwise it takes too long to get round to your go again.  It works really well with small classes working in pairs or threes.

Then we start randomly generating digits.  You could just use a dice (it doesn’t matter if you only have digits up to six), or using something like this from Classtools.net

Dec-21-2016 14-33-14.gif

There are a couple of twists that I have added to this over the years.

1, You don’t just get to place the digits in your own row, you can also place them in someone else’s row. So if you get a low digit, you can scupper someone else’s chances by putting it in their thousands column. This depends very much on the culture within the classroom. If you think there might be existing friendship issues amongst the group then it may be best to avoid this twist.

2, You could add some extra options as shown above, e.g. multiply or divide by ten.  This can make it a bit more interesting.  Other options might be to be able to erase a digit.

It’s good fun, but to get the most out of it, it is good to discuss at various stages who will definitely have the highest number / lowest number, etc.  You don’t always need to fill the grid completely to determine the order of the numbers. Why is this?

If you have used this or have any ideas for other “twists”, please drop me a line in the comments.

Advertisement

FDP ordering activity

This is a simple card sort activity where students fill in the blanks, practising converting between fractions, decimals and percentages and then placing them in order from smallest to largest.

What I particularly like about it is that you can hand out the cards in 3 sets of 5.  This could provide differentiation, but more importantly (in my view) it gives the teacher the chance to assess the progress of the students as they go. It’s easy to glance at Set A to see if they have worked it out.img_20161207_132457

As you circulate the class, helping students you can give out Set B which interleave with Set A to produce this:

img_20161207_132601

And then finally with Set C, you get this:

img_20161207_103040

Here is the pdf as a set of 15 cards, but if you are printing a class set, then I strongly recommend using the Excel version here.  This is set up so you print 5 at a time.  They come out stacked so that as you cut you have a set of 5 already in a pile without needing to sort them.

Also, if you want to change the actual values and which values you show, you can do that on the spreadsheet too.

 

Sofia’s Ribbons

I’m not sure who Sofia is or where this originated, but it was presented by Liz Henning at the recent MTN hosted by La Salle Education in London and it struck me as a great way to introduce bar modelling at all levels, and could really help with ratio and fractions.

Start with 2 equal strips of paper, “ribbons”. Ask questions like:

  • If each ribbon cost 10p how much do they cost altogether?
  • If both ribbons together weigh 6g, how much does one weigh?
  • If both ribbons represent one hour, how much time is one ribbon?
  • etc.

Representation is a key concept here.  The ribbons can represent something else but that representation can be useful to work things out.  It also uses the idea of part-part-whole.

Next, take one of the ribbons and fold it in half.  Tear along the fold, so you have this:

img_20161117_132846

Now you can ask questions like:

  • If the orange ribbon is 10p, how much is the white ribbon?
  • If the ribbons weigh 15g overall, how much does the orange one weigh?
  • What fraction of this is the total?
  • If white represents 12 hours how much does orange represent?
  • What is the ratio of orange to white?

Next, take the orange ribbon and fold it in half again, so you have this:

img_20161117_133904

Now ask:

  • If orange is now worth 10p, how much is white?
  • If both represent 2½ hours, how much does white represent?

and from here you can get into drawing bar model to represent what is going, e.g.

Capture.PNG  capture

I used the bar modelling tool Thinking Blocks to create these images. Once you get used to the interface, it is a quick way of creating bar models for use in the classroom and contains a number of problems that you can use with learners.